Sunday, August 31, 2008

Love songs, movies and real life

There is a song named Heaven knows from the 1995 movie Hackers: In real life, people often don't reach the end of their personal movie, i.e. there is a kiss but maybe with a less suitable partner who is just regarded as Mr. or Mrs. Right.

In movies - such as Hackers - they luckily mostly get the chance to give their kiss to the right counterpart: If it's most romantic, we will see a
kiss of surrender (from both sides) - to admit that there is something more important than oneself.

Actually, love in real life should be like that, too: The kiss, being a moment of absolut balance and truth and peace with yourself.

Thursday, August 28, 2008

About the the death of the winning Blue Ray Disc

In my point of view, the Blue Ray Disc is actually dead. The movies in Germany are still too expensive.

NEC, Microsoft, Toshiba, Intel, IBM und Hewlett Packard had formed the HD-consortium to promote the HD standard.

The all deceisive question however is: Why should one buy a mechanical disc with a movie or software on it when all stuff could actually better be stored on a USB-stick ? Since the 8 GB sticks are out and other non-mechanical memory devices surely on their way, why should one use an antique mechanical disc system ?

The only reason seems to be for copy protection purposes. I wonder if that is a sufficient reason to become a successful product ?

Maybe a small company who builds a copy protection into a USB stick will be the final winner ? If I were in electronics, I'd bet on that.

Über Mülleimer im Weltraum und die Notwendigkeit zu recyclen

Zitat aus Yahoo-News vom 28.08.2008: "US-Kollege Greg Chamitoff wartete den Hometrainer, auf dem sich die Astronauten fit halten. Gemeinsam mit Kommandant Sergej Wolkow (Russland) luden sie ferner Nachschub aus dem ATV in die Station um und verstauten Abfälle in ihm.

Der Frachter, der Anfang April an der ISS angedockt hatte, wird im September abgekoppelt und verglüht als kosmische Mülltonne über dem Pazifik. In den vergangenen Monaten ist die Flugbahn der Station bereits viermal mit den ATV-Triebwerken geliftet worden."

Erste Frage: Ist es notwendig das ATV abzukoppeln, bevor ihm der Treibstoff ausgeht ? Stellt das ATV ein Sicherheitsrisiko für die ISS dar, wenn es nach Verbrauch des eigenen Treibstoffs an der ISS angedockt bliebe ?

Muß der genutze Andockstutzen unbedingt frei gemacht werden ?

Zweite Frage: Benötigt man, um das ATV an der ISS befestigen zu können, unbedingt einen Andockstutzen oder könnte man das ATV auch anders befestigen (damit der Andockstutzen frei wird) ?

Dritte Frage: Muß das ATV unbedingt klimatisiert werden, um es als Lagerraum nutzen zu können ? Könnte man es später wieder mit Energie versorgen und in Betrieb nehmen, falls man das möchte (d.h. wenn eine Schleuse am Andockstutzen vorhanden wäre) ?

Vierte Frage: Könnte man auf einfache Weise eine Verschlußtür für den Andockstutzen schaffen ? Oder reicht vielleicht sogar ein Vorhang aus einer nicht benötigten Abdeckplane ?

Fünfte Frage: Wieviel mehr Energie wird bei Anhebung der Flugbahn der ISS benötigt, wenn ein ATV angedockt bleibt ? Wieviel kostet das mehr ?

Sechste Frage: Könnte man das ATV ggf. als Gegengewicht für eine rotierende ISS-Station (für künstliche Schwerkraft) nutzen (zusammen mit weiteren ATV oder sonstigen Raumfähren (Progress etc.) ? -> siehe The need for artificial gravity: http://bulsara-photon.blogspot.com/2005/03/lack-of-gravity.html

Siebte Frage: Wieviel Energie wird benötigt, um ein ATV (leer) zur ISS hoch zu bringen ? Mit anderen Worten: Wieviel kostet das ? Welche Vorteile und welcher finanzielle Vorteil geht verloren, wenn man das ATV abstürzen läßt ?

Achte Frage: Könnte man das ATV ggf. auch später ohne Gefahr für die ISS abstürzen lassen ?

Neunte Frage: Was könnte man auf der ISS alles mehr, oder einfacher machen, wenn das ATV angedockt bliebe bzw. zumindest weiter an anderer Stelle der ISS befestigt bliebe ?

Meine Meinung darüber das ATV als Mülleimer zu verwenden und abstürzen zu lassen: Ich denke, das ist eine schreckliche Vergeudung von Ressorcen. Wie kommt bloß jemand auf die Idee ein Raumfahrzeug oder einen Campingbus als Mülleimer zu nutzen ? Wer macht das denn bei seinem Auto oder Campingbus ?? Auf der Erde ist niemand so reich oder so beschränkt. Nur im Weltraum, da ist so etwas offenbar möglich...

...und das nötige Geld für solche Späße vorhanden.

Doch was ist ein ATV (Automatisches Transfer Vehikel) überhaupt: - Ein ATV transportiert Lebensmittel und Ausrüstung zur ISS (Internationalen Raumstation). Es ist klimatisiert und kann wie ein gewöhnlicher Raum der ISS genutzt werden.

Unklar ist (nirgendwo habe ich davon gelesen), was passieren würde, wenn das ATV an der ISS angedockt bliebe. Zumindest eine teilweise eigene Energieversorgung durch eigene Sonnensegel besitzt das ATV.

Einige Antworten zur neunten Frage, was wären sinnvolle Nutzungsmöglichkeiten für das ATV ? -

...to be continued

Tuesday, August 26, 2008

Über die Erwärmung von Oberflächen bei größerer Geschwindigkeit

Es stellt sich die Frage: Warum erwärmen sich Oberflächen ?

Eine Trivialantwort wäre: Wegen Reibung. Das ist aber eine makroskopische Antwort, also billig.

Eine bessere Antwort wäre vermutlich: Weil Vorgänge zwischen Elektronen und Atomkern eine Loslösung mindestens eines Elektrons vom Komplett-Atom bewirken. Gibt es viele losgelöste ehemalige Hüllenelektronen, so spricht man von einem Plasma(gemisch).

Eine Anschlußfrage stellt sich: Welche Temperaturen werden dabei maximal gemessen ?

Eine Gegenfrage wäre: Wie soll denn die Temperatur überhaupt gemessen werden ? Kann man Temperatur überhaupt vernünftig messen ? Wie bewertet man Temperatur ? Sind 1000°C normal, was ist mit 2000°C oder 3000°C ?

Was bewirken 2000°C anderes im Vergleich zu 1000° ? Wird ein Buch bei 2000°C doppelt so schnell verbrannt wie bei 1000° ? - Man sieht, der Begriff Temperatur scheint unsinnig.

Besser wäre vermutlich die Frage: Wenn ich eine Energie von 2000 J zuführe, was geschieht dann anders, als bei 1000 J Energiezufuhr ?

Eine sehr interessante Frage wäre: Welche Mechanismen sorgen für eine Zustandsänderung des Oberflächenmaterials ? Interessant deswegen, weil man vermutlich von mehr als einem Mechanismus auf atomarer Ebene ausgehen kann.

Eine erster Mechanismus könnte sein: Die Ablösung von Hülleneletronen eines Atoms (von außen nach innen).

Eine zweiter, interessanterer Mechanismus könnte sein: Das Schwingen des Atomkerns gegen seine Hüllenelektronen (s. den Artikel Über die Desintegration von Flugzeugen ohne Fremdeinwirkung) Dieses Schwingen dürfte bereits bei Geschwindigkeiten eines festen Makrokörpers in einem Luftkörper oberhalb von ca. 100 km/h Relativgeschwindigkeit eine Rolle spielen.

Gehen wir mal von ca. 1000 km/h Relativgeschwindigkeit zwischen Luft und Festkörper aus:

Dann...


...to be continued

Über die Desintegration von Flugzeugen bei einem Absturz ohne Fremdeinwirkung

Beobachtung: Es fällt auf, dass bei Flugzeugabstürzen oftmals eine fast vollständige Desintegration sämtlicher Bestandteile des Flugzeugs und seiner mit ihm beförderten Inneneinrichtung, Waren und Menschen stattfindet.

Man könnte daher vielleicht besser von einer Desintegration auf atomarer Ebene sprechen, als von einem Auseinanderbrechen des Flugzeugs (was impliziert, dass größere Materialverbünde intakt bleiben, wenn man so will: eine makroskopische Desintegration stattfindet).

Untersuchung a: Es wäre daher interessant herauszufinden, bei welcher atomaren Belastung ein Atom desintegriert. Zunächst würde man vermuten, dass hierfür der aufbrechende Zusammenhalt der benachbarten Hüllenelektronen verantwortlich ist. Das ist auch vermutlich nicht falsch, aber eigentlich nicht der entscheidenede Punkt:

Da nämlich der Kern deutlich schwerer ist, als seine sämtlichen Hüllenelektronen zusammmen, so kann man modellmäßig sicher besser von einer volumenmäßig kleinen und gewichtsmäßig großen Masse in einem Hohlkörper mit dem ungefähren Durchmesser 10EE-10 m sprechen.

Weil die Massenträgheit (bis zu einem Gegenbeweis) auch auf das System Atomkern-Atomhülle zutrifft, kann man sich den Effekt einer plötzlichen Abbremsung (sprich: Crash eines Flugzeugatoms auf den Erdboden) gut vorstellen:

Der Atomkern nähert sich plötzlich einseitig der "unteren" (dem Erdboden zugewandten) Seite der Atomhülle: Dadurch finden starke Abstoßungsreaktionen zwischen Atomkern und seiner unteren Atomhülle statt.

Mit dem möglichen und zu beweisendem Effekt, dass viele Elektronen quasi durch ihren eigenen Atomkern "weggesprengt werden". Und zwar so weit, dass eine Atombindung zwischen benachbarten Atomen nicht meht gegeben ist.

Untersuchung b: Grundsätzlich wäre es daher interessant, die Grenzgeschwindigkeit(en) herauszufinden, bei der Zerstörung nur auf Grund von makroskopischen Atomverbundsfehlern auftritt und bei welchen Geschwindigkeiten in einem unbeschädigten Atomverbund ein Versagen auf Grund von Interaktionsvorgängen zwischen Atomkern und Atomhülle auftritt.

...to be continued

Friday, August 15, 2008

About a BBC documentary about Nano robots by Nick Green from 2004

Preliminary statement: I assume that journalists are always under pressure to make a story look interesting, even more interesting than it would actually appear to the majority of spectators (if they came across the subject themselves).

The documentry: In 2004, BBC aired a documentary on TV about the dangers of nano robots and the threatening end of the miniaturization of electronic devices, referred to as "the end of Moore's law" (see Wikipedia.com for details).

My statement about this documentary: The way that Nick Green builds up an apocalypic tension in that documentary saying (among other things) that "the end of Moore's law will bring our economic progress to a halt" and finally destroy our industrial civilization is at best provocative and at worst absolutely nonsense.

Everyone with a slightly clear mind will accept that indeed the miniaturization will come to a halt one day because at the size of the atom level it might not be possible to further miniaturize electronic devices.

However, the conclusions that Nick Green draws from this are pretty much outrageous and rediculous.

Nick Green elaborates that when this happens, companies will not be able to make any more profits.

I can only assume what his funny trails of thoughts want to express by this statement: If he wants to say that companies will not be able to continue competition due to this, I would suggest that he interviews some company leaders who sell products in a saturated market (because that's a similar situation):

It seems that Nick Green takes the view that only competition due to technical innovation let's a company go ahead of the other and therefore gain them a temporary winning margin which delivers them the gains that they need to survive the battle.

Wait: I tell Nick Green a secret: If that was true, our world would have stopped long ago: One thing is clear, if there is no technical progress in a certain sector with mass products such as e.g. butter there must be other mechanisms at work as reality shows us every day. So, how can those companies survive ??

Well, it's rediculous being forced to answer that question, I actually feel like an idiot: In short I could say: The company with the better management will succeed the economic battle.

But, all right, I give some more ideas: The company with the higher marketing budget will probably gain an advantage (and the battle), the company with the cooler packaging design will win the battle, the company with the better sales personal will win the battle, the company with the better milk buying agents who get a better milk prize will win the battle and so on and so on and so on.

And what about the end customer: Will he suffer from the lack in technological progress in the production of butter or even computers and electronic devices ??

Answer: Of course not, as log as you don't take the butter or the computer away from him: The end customer still can do wonderful things with the butter of a hundred years or a computer - e.g. writing better articles
than other authors against stupid documentaries such as the one by Nick Green.

And by the way, there will be technological progress in other areas so there is always hope.

End note: Thank you BBC for all the other great documentaries.-

Über die Fähigkeit Musik zu hören und Bilder zu betrachten

Für wen ist es leichter Musik zu hören oder Bilder zu betrachten ?

Ich denke für denjenigen, der dieses noch nie gemacht hat: Denn wer Musik zum ersten Mal hört, der besitzt die Gnade der Unschärfe: Er hört die Melodie und die Stimmung.

Wer Erfahrung hat, der hört die einzelnen Noten und die minimalen Abweichungen und Fehler im Spiel.

Genauso bei einem Bild: Ein Fachmann sieht die einzelnen Bildpunkte, ein Anfänger die Stimmung und das Gesamte.


So sollte der schaffende Künstler am besten einen Anfänger nach seiner Meinung fragen.-

Thursday, August 07, 2008

About dark curtains and heat collection

Experiment: A thin white linen curtain in front of a window, the window is tilted (that's possible at many European windows) so that there is a gap to the open air for venting the room, and there are other smaller gaps between the curtain and the wall on the right and on the left hand side (inside the room) which allow heated air to enter the rest of the room (if there is any heated air).

To make the experiment a little more fun, let's further assume that the curtain consists of a 1 mm thick layer of flexible woven copper behind the thin almost transparent white linen layer (which is an isolator like most textiles).

Observation: When there is a white linen curtain at a window, its colour guarantees that sun beams (and thereby heat) are reflected pretty well.

In contrast to that, if you spray the white linen with a thin layer of let's say black paint, sun beams and thereby heat is collected pretty well, heating up the room.

Conclusion: A thin layer of dark material at a surface is sufficient to change the heat behaviour of a much bigger voluminous body below:

This indicates that the relevant physical processes of turning sun beams into heat take place at the surface of (such) materials.

Since the sun beams are not powerful enough - as far as I know - to change the core of an atom, it seems obvious that the excitation and electron recombination are changed by dark surfaces in a way that let's the resulting electro-magnetic waves not turn into light beams that move away from the surface again (i.e. are reflected) but instead let electro-magnetic waves change their wave length and frequency in a way that turns them into infra red heat waves (the latter is an assumption that one should prove or disprove).

After these different kind of e-m-waves do exist ("are alive finally"), it does not seem to matter that the material below is of different structure (i.e. actually white if exposed to light or is of copper or is just air).

These kind of e-m-waves ("heat waves") have a nature that is able to "infect" (heat up) almost all other materials. And this refers both to gaseous materials such as air but also to solid bodies such as metals.

Result: A dark material is "dark" because its electron hull behaves differently when it is hit by e-m-waves (light waves), compared to an electron hull of a "bright" material.

Explanation: An explanation is easy if we assume that the material is hit by light waves with wave lengths between 397 to 656 nm:

Whitish materials (mainly) will turn the impacting light waves into visible light waves again or in other words "reflect" the light.
  • Not a prove but: Feel the temperature of the copper on the backside of the curtain and compare it to the temperature of the darkish painted curtain.
  • Not a prove but: One is often blended by the bright beaming of whitish objects but never by that of darkish objects.
Darkish materials in contrast seem to turn most of the impacting light waves (of somewhere between 397 to 656 nm wave length) into "heat waves" of something between 1000 to 4000 nm.
  • Not a prove but: Feel the temperature of the copper on the backside of the curtain and compare it to the temperature of the whitish curtain.
  • Not a prove but: If dark objects would send out as many e-m-waves in the visible as a whitish body does, the human eye would perceive shiny objects. But this is generally not the case.-
How do darkish materials achieve the change from light into heat: The easiest explanation seems to be that the electron hull configuration of darkish materials is excited by light waves but reconfigures mainly by sending out infrared waves (perceived as "heat waves").

Side remark: Not all visible e-m-light-waves turn into infrared e-m-heat-waves and some not even can (as a look at a term scheme of a spectrum shows): E.g. the alpha-3 excitation falls back from m = 3 to n = 2 whereas the infrared excitation has its base n =3 and thereby just sending out visible e-m-waves.

About the subjective darkish or whitish character of objects: One could possibly say that the human eye actually perceives surfaces as dark if a reasonable percentage of light - that hits a surface - is turned into "heat waves" and therefore "vanishes" from the human eye since the human eye is not able to perceive heat waves (at temperatures up to 100°C and way above at least).

Since less e-m-waves are turned back into light, less light waves can reach the human eye in comparison to surfaces with a "whitish electron character".

It can be assumed, since the human eye is easily deceivable, that a material only then appears as dark, if there are other surfaces around that reflect light seriously better
(and thereby build an observable contrast).

On the other hand, a dark walled room containing dark objects is certainly perceived as a dark room with dark objects (but maybe also just because we know that there are brighter objects in the rest of the world).

Something clinical: To observe this thing more clinical, it can be said that an object can send out a minimum and maximum number of e-m-waves since the number of electrons are finite that can react with incoming (e-m light) waves.

So, if we look at a surface of 5*10-10 m (i.e. 25 atoms) and if we assume that only one hull electron interacts and if we further assume that the atoms don't interact with eath other we would have an y-axis from 1 to 25 units.

If we further see the time span of excitation and electron recombination ("mean time of exitation and electron recombination") as a defined known time intervall, we can estimate the maximum number of excitation-recombination intervals per time unit.

Let's just assume that each electron can experience a maximum number of 10 cycles per time unit, the x-axis then would go from 0 to 250 since we have 25 electrons (atoms) that are active.

A z-axis which would go from 0 to 100 % then could show us the amount of e-m waves that are turned back into "light waves" or changed into "heat waves".

Judging materials with this 3-d-graph, we might be able to decide more easily if we wonna regard a material as darkish or whitish.-